openavmkit.data
SalesUniversePair
dataclass
SalesUniversePair(sales, universe)
A container for the sales and universe DataFrames, many functions operate on this data structure. This data structure is necessary because the sales and universe DataFrames are often used together and need to be passed around together. The sales represent transactions and any known data at the time of the transaction, while the universe represents the current state of all parcels. The sales dataframe specifically allows for duplicate primary parcel transaction keys, since an individual parcel may have sold multiple times. The universe dataframe forbids duplicate primary parcel keys.
Attributes:
Name | Type | Description |
---|---|---|
sales |
DataFrame
|
DataFrame containing sales data. |
universe |
DataFrame
|
DataFrame containing universe (parcel) data. |
copy
copy()
Create a copy of the SalesUniversePair object.
Returns:
Type | Description |
---|---|
SalesUniversePair
|
A new SalesUniversePair object with copied DataFrames. |
Source code in openavmkit/data.py
107 108 109 110 111 112 113 114 115 |
|
set
set(key, value)
Set the sales or universe DataFrame.
Attributes:
Name | Type | Description |
---|---|---|
key |
str
|
Either "sales" or "universe". |
value |
DataFrame
|
The new DataFrame to set for the specified key. |
Raises:
Type | Description |
---|---|
ValueError
|
If an invalid key is provided |
Source code in openavmkit/data.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
update_sales
update_sales(new_sales, allow_remove_rows)
Update the sales DataFrame with new information as an overlay without redundancy.
This function lets you push updates to "sales" while keeping it as an "overlay" that doesn't contain any redundant information.
- First we note what fields were in sales last time.
- Then we note what sales are in universe but were not in sales.
- Finally, we determine the new fields generated in new_sales that are not in the previous sales or in the universe.
- A modified version of df_sales is created with only two changes:
- Reduced to the correct selection of keys.
- Addition of the newly generated fields.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_sales
|
DataFrame
|
New sales DataFrame with updates. |
required |
allow_remove_rows
|
bool
|
If True, allows the update to remove rows from sales. If False, preserves all original rows. |
required |
Source code in openavmkit/data.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
enrich_df_streets
enrich_df_streets(df_in, settings, spacing=1.0, max_ray_length=25.0, network_buffer=500.0, verbose=False)
Enrich a GeoDataFrame with street network data.
This function enriches the input GeoDataFrame with street network data by calculating frontage, depth, distance to street, and many other related metrics, for every road vs. every parcel in the GeoDataFrame, using OpenStreetMap data.
WARNING: This function can be VERY computationally and memory intensive for large datasets and may take a long time to run.
We definitely need to work on its performance or make it easier to split into smaller chunks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_in
|
GeoDataFrame
|
Input GeoDataFrame containing parcels. |
required |
settings
|
dict
|
Settings dictionary containing configuration for the enrichment. |
required |
spacing
|
float
|
Spacing in meters for ray casting to calculate distances to streets. Default is 1.0. |
1.0
|
max_ray_length
|
float
|
Maximum length of rays to shoot for distance calculations, in meters. Default is 25.0. |
25.0
|
network_buffer
|
float
|
Buffer around the street network to consider for distance calculations, in meters. Default is 500.0. |
500.0
|
verbose
|
bool
|
If True, prints progress information. Default is False. |
False
|
Returns:
Type | Description |
---|---|
GeoDataFrame
|
Enriched GeoDataFrame with additional columns for street-related metrics. |
Source code in openavmkit/data.py
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
|
enrich_sup_spatial_lag
enrich_sup_spatial_lag(sup, settings, verbose=False)
Enrich the sales and universe DataFrames with spatial lag features.
This function calculates "spatial lag", that is, the spatially-weighted average, of the sale price and other fields, based on nearest neighbors.
For sales, the spatial lag is calculated based on the training set of sales. For non-sale characteristics, the spatial lag is calculated based on the universe parcels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
SalesUniversePair containing sales and universe DataFrames. |
required |
settings
|
dict
|
Settings dictionary. |
required |
verbose
|
bool
|
If True, prints progress information. |
False
|
Returns:
Type | Description |
---|---|
SalesUniversePair
|
Enriched SalesUniversePair with spatial lag features. |
Source code in openavmkit/data.py
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 |
|
enrich_time
enrich_time(df, time_formats, settings)
Enrich the DataFrame by converting specified time fields to datetime and deriving additional fields.
For each key in time_formats, converts the column to datetime. Then, if a field with the prefix "sale" exists, enriches the DataFrame with additional time fields (e.g., "sale_year", "sale_month", "sale_age_days").
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame. |
required |
time_formats
|
dict
|
Dictionary mapping field names to datetime formats. |
required |
settings
|
dict
|
Settings dictionary. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with enriched time fields. |
Source code in openavmkit/data.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
get_dtypes_from_settings
get_dtypes_from_settings(settings)
Generate a dictionary mapping fields to their designated data types based on settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
Settings dictionary. |
required |
Returns:
Type | Description |
---|---|
dict
|
Dictionary of field names to data type strings. |
Source code in openavmkit/data.py
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
|
get_field_classifications
get_field_classifications(settings)
Retrieve a mapping of field names to their classifications (land, improvement or other) as well as their types (numeric, categorical, or boolean).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
Settings dictionary. |
required |
Returns:
Type | Description |
---|---|
dict
|
Dictionary mapping field names to type and class. |
Source code in openavmkit/data.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
|
get_hydrated_sales_from_sup
get_hydrated_sales_from_sup(sup)
Merge the sales and universe DataFrames to "hydrate" the sales data.
The sales data represents transactions and any known data at the time of the transaction, while the universe data represents the current state of all parcels. When we merge the two sets, the sales data overrides any existing data in the universe data. This is useful for creating a "hydrated" sales DataFrame that contains all the information available at the time of the sale (it is assumed that any difference between the current state of the parcel and the state at the time of the sale is accounted for in the sales data).
If the merged DataFrame contains a "geometry" column and the original sales did not, the result is converted to a GeoDataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
SalesUniversePair containing sales and universe DataFrames. |
required |
Returns:
Type | Description |
---|---|
DataFrame or GeoDataFrame
|
The merged (hydrated) sales DataFrame. |
Source code in openavmkit/data.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
get_important_field
get_important_field(settings, field_name, df=None)
Retrieve the important field name for a given field alias from settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
Settings dictionary. |
required |
field_name
|
str
|
Identifier for the field. |
required |
df
|
DataFrame
|
Optional DataFrame to check field existence. |
None
|
Returns:
Type | Description |
---|---|
str or None
|
The mapped field name if found, else None. |
Source code in openavmkit/data.py
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
|
get_important_fields
get_important_fields(settings, df=None)
Retrieve important field names from settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
Settings dictionary. |
required |
df
|
DataFrame
|
Optional DataFrame to filter fields. |
None
|
Returns:
Type | Description |
---|---|
list[str]
|
List of important field names. |
Source code in openavmkit/data.py
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
|
get_locations
get_locations(settings, df=None)
Retrieve location fields from settings. These are all the fields that are considered locations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
Settings dictionary. |
required |
df
|
DataFrame
|
Optional DataFrame to filter available locations. |
None
|
Returns:
Type | Description |
---|---|
list[str]
|
List of location field names. |
Source code in openavmkit/data.py
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
|
get_report_locations
get_report_locations(settings, df=None)
Retrieve report location fields from settings.
These are location fields that will be used in report breakdowns, such as for ratio studies.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
Settings dictionary. |
required |
df
|
DataFrame
|
Optional DataFrame to filter available locations. |
None
|
Returns:
Type | Description |
---|---|
list[str]
|
List of report location field names. |
Source code in openavmkit/data.py
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
|
get_sale_field
get_sale_field(settings, df=None)
Determine the appropriate sale price field ("sale_price" or "sale_price_time_adj") based on time adjustment settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
Settings dictionary. |
required |
df
|
DataFrame
|
Optional DataFrame to check field existence. |
None
|
Returns:
Type | Description |
---|---|
str
|
Field name to be used for sale price. |
Source code in openavmkit/data.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
|
get_train_test_keys
get_train_test_keys(df_in, settings)
Get the training and testing keys for the sales DataFrame.
This function gets the train/test keys for each model group defined in the settings, combines them into a single mask for the sales DataFrame, and returns the keys for training and testing as numpy arrays.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_in
|
DataFrame
|
Input DataFrame containing sales data. |
required |
settings
|
dict
|
Settings dictionary |
required |
Returns:
Type | Description |
---|---|
tuple
|
A tuple containing two numpy arrays: keys_train and keys_test. - keys_train: keys for training set - keys_test: keys for testing set |
Source code in openavmkit/data.py
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
|
get_train_test_masks
get_train_test_masks(df_in, settings)
Get the training and testing masks for the sales DataFrame.
This function gets the train/test masks for each model group defined in the settings, combines them into a single mask for the sales DataFrame, and returns the masks as pandas Series
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_in
|
DataFrame
|
Input DataFrame containing sales data. |
required |
settings
|
dict
|
Settings dictionary |
required |
Returns:
Type | Description |
---|---|
tuple
|
A tuple containing two pandas Series: mask_train and mask_test. - mask_train: boolean mask for training set - mask_test: boolean mask for testing set |
Source code in openavmkit/data.py
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 |
|
get_vacant
get_vacant(df_in, settings, invert=False)
Filter the DataFrame based on the 'is_vacant' column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_in
|
DataFrame
|
Input DataFrame. |
required |
settings
|
dict
|
Settings dictionary. |
required |
invert
|
bool
|
If True, return non-vacant rows. |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame filtered by the |
Raises:
Type | Description |
---|---|
ValueError
|
If the |
Source code in openavmkit/data.py
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
|
get_vacant_sales
get_vacant_sales(df_in, settings, invert=False)
Filter the sales DataFrame to return only vacant (unimproved) sales.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_in
|
DataFrame
|
Input DataFrame. |
required |
settings
|
dict
|
Settings dictionary. |
required |
invert
|
bool
|
If True, return non-vacant (improved) sales. |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with an added |
Source code in openavmkit/data.py
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
|
process_data
process_data(dataframes, settings, verbose=False)
Process raw dataframes according to settings and return a SalesUniversePair.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataframes
|
dict[str, DataFrame]
|
Dictionary mapping keys to DataFrames. |
required |
settings
|
dict
|
Settings dictionary. |
required |
verbose
|
bool
|
If True, prints progress information. |
False
|
Returns:
Type | Description |
---|---|
SalesUniversePair
|
A SalesUniversePair containing processed sales and universe data. |
Raises:
Type | Description |
---|---|
ValueError
|
If required merge instructions or columns are missing. |
Source code in openavmkit/data.py
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
|