openavmkit.pipeline
Pipeline
This module contains every public function that is called from the notebooks in the openavmkit project.
Rules:
- Every public function should be called from at least one notebook.
- The primary openavmkit notebooks should only call functions from this module.
- This module imports from other modules, but no other modules import from it.
NotebookState
NotebookState(locality, base_path=None)
Represents the state of a notebook session including the base path and locality.
Attributes:
Name | Type | Description |
---|---|---|
base_path |
str
|
locality : str The locality identifier (e.g., "us-nc-guilford"). |
Initialize a NotebookState instance.
Attributes:
Name | Type | Description |
---|---|---|
locality |
str
|
The locality slug (e.g., "us-nc-guilford"). |
base_path |
str
|
The base directory path. Defaults to the current working directory if not provided. |
Source code in openavmkit/pipeline.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
cloud_sync
cloud_sync(locality, verbose=False, env_path='', bootstrap='', dry_run=False, ignore_paths=None)
Synchronize local files to cloud storage.
This function initializes the cloud service and syncs files for the given locality.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
locality
|
str
|
The locality identifier used to form remote paths. |
required |
verbose
|
bool
|
If True, prints detailed log messages. Defaults to False. |
False
|
env_path
|
str
|
Path to the environment configuration file. Defaults to an empty string. |
''
|
bootstrap
|
str
|
Which cloud service to bootstrap from on an initial run. Defaults to an empty string. |
''
|
dry_run
|
bool
|
If True, simulates the sync without performing any changes. Defaults to False. |
False
|
ignore_paths
|
list
|
List of file paths or patterns to ignore during sync. Defaults to None. |
None
|
Source code in openavmkit/pipeline.py
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 |
|
delete_checkpoints
delete_checkpoints(prefix)
Delete all checkpoints that match the given prefix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prefix
|
str
|
The prefix used to identify checkpoints to delete. |
required |
Returns:
Type | Description |
---|---|
None
|
FILL_IN_HERE: Describe return value if any. |
Source code in openavmkit/pipeline.py
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 |
|
enrich_sup_spatial_lag
enrich_sup_spatial_lag(sup, settings, verbose=False)
Enrich the sales and universe DataFrames with spatial lag features.
This function calculates "spatial lag", that is, the spatially-weighted average, of the sale price and other fields, based on nearest neighbors.
For sales, the spatial lag is calculated based on the training set of sales. For non-sale characteristics, the spatial lag is calculated based on the universe parcels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
SalesUniversePair containing sales and universe DataFrames. |
required |
settings
|
dict
|
Settings dictionary. |
required |
verbose
|
bool
|
If True, prints progress information. |
False
|
Returns:
Type | Description |
---|---|
SalesUniversePair
|
Enriched SalesUniversePair with spatial lag features. |
Source code in openavmkit/pipeline.py
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
|
enrich_sup_streets
enrich_sup_streets(sup, settings, verbose=False)
Enrich a GeoDataFrame with street network data.
This function enriches the input GeoDataFrame with street network data by calculating frontage, depth, distance to street, and many other related metrics, for every road vs. every parcel in the GeoDataFrame, using OpenStreetMap data.
WARNING: This function can be VERY computationally and memory intensive for large datasets and may take a long time to run.
We definitely need to work on its performance or make it easier to split into smaller chunks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
The data you want to enrich |
required |
settings
|
dict
|
Settings dictionary |
required |
verbose
|
bool
|
If True, prints verbose output during processing. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
GeoDataFrame
|
Enriched GeoDataFrame with additional columns for street-related metrics. |
Source code in openavmkit/pipeline.py
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
|
examine_df
examine_df(df, s)
Print examination details of the dataframe. This function displays summary statistics and unique values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The data you wish to examine |
required |
s
|
dict
|
Settings dictionary. |
required |
Source code in openavmkit/pipeline.py
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
examine_df_in_ridiculous_detail
examine_df_in_ridiculous_detail(df, s)
Print details of the dataframe, but in RIDICULOUS DETAIL
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The data you wish to examine |
required |
s
|
dict
|
Settings dictionary. |
required |
Source code in openavmkit/pipeline.py
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
examine_sup
examine_sup(sup, s)
Print examination details of the sales and universe data from a SalesUniversePair.
This function displays summary statistics and unique values for both the sales and universe DataFrames contained in the provided SalesUniversePair.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Object containing 'sales' and 'universe' DataFrames. |
required |
s
|
dict
|
Settings dictionary. |
required |
Source code in openavmkit/pipeline.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
|
examine_sup_in_ridiculous_detail
examine_sup_in_ridiculous_detail(sup, s)
Print details of the sales and universe data from a SalesUniversePair, but in RIDICULOUS DETAIL.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Object containing 'sales' and 'universe' DataFrames. |
required |
s
|
dict
|
Settings dictionary. |
required |
Source code in openavmkit/pipeline.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
fill_unknown_values_sup
fill_unknown_values_sup(sup, settings)
Fill unknown values with default values as specified in settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
The SalesUniversePair containing sales and universe data. |
required |
settings
|
dict
|
The settings dictionary containing configuration for filling unknown values. |
required |
Returns:
Type | Description |
---|---|
SalesUniversePair
|
The updated SalesUniversePair with filled unknown values. |
Source code in openavmkit/pipeline.py
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
|
finalize_models
finalize_models(sup, settings, save_params=True, use_saved_params=True, verbose=False)
Tries out predictive models on the given SalesUniversePair, finalizes results and writes to disk.
This function takes detailed instructions from the provided settings dictionary and handles all the internal details like splitting the data, training the models, and saving the results. It performs basic statistic analysis on each model, and optionally combines results into an ensemble model.
This function iterates over model groups and runs models for main, hedonic and vacant cases.
It delegates the model execution to openavmkit.benchmark.run_models
with the given settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
settings
|
dict
|
The settings dictionary. |
required |
save_params
|
bool
|
Whether to save model parameters. |
True
|
use_saved_params
|
bool
|
Whether to use saved model parameters. |
True
|
verbose
|
bool
|
If True, prints additional information. |
False
|
Returns:
Type | Description |
---|---|
MultiModelResults
|
The MultiModelResults containing all model results and benchmarks. |
Source code in openavmkit/pipeline.py
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 |
|
from_checkpoint
from_checkpoint(path, func, params)
Read cached data from a checkpoint file or generate it via a function.
Wrapper that attempts to load a DataFrame from the given checkpoint path. If the file does not exist, it calls the provided function with the given parameters to generate the data, saves the result to the checkpoint, and returns it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
Path to the checkpoint file. |
required |
func
|
callable
|
Function to run if the checkpoint is not available. Should return a DataFrame. |
required |
params
|
dict
|
Parameters to pass to |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
The resulting DataFrame, loaded from the checkpoint or generated. |
Source code in openavmkit/pipeline.py
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 |
|
init_notebook
init_notebook(locality)
Initialize the notebook environment for a specific locality.
This function sets up the notebook state by configuring the working directory and ensuring that the appropriate data directories exist.
Attributes:
Name | Type | Description |
---|---|---|
locality |
str
|
The locality slug (e.g., "us-nc-guilford"). |
Source code in openavmkit/pipeline.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
load_and_process_data
load_and_process_data(settings)
Load and process data according to provided settings.
This function first loads the dataframes, then merges and enriches the data, returning a SalesUniversePair.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
A dictionary of settings for data loading and processing. |
required |
Returns:
Type | Description |
---|---|
SalesUniversePair
|
A SalesUniversePair object containing the processed sales and universe data. |
Source code in openavmkit/pipeline.py
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
|
load_dataframes
load_dataframes(settings, verbose=False)
Load dataframes based on the provided settings and return them in a dictionary.
This function reads various data sources defined in the settings and loads them into pandas DataFrames. It performs validations to ensure required data, such as 'geo_parcels', is present and correctly formatted.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
Settings dictionary. |
required |
verbose
|
bool
|
If True, prints detailed logs during data loading. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
dict
|
Dictionary mapping keys to loaded DataFrames. |
Raises:
Type | Description |
---|---|
ValueError
|
If required dataframes or columns (e.g., 'geo_parcels' or its 'geometry' column) are missing. |
Source code in openavmkit/pipeline.py
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
|
load_settings
load_settings(settings_file='in/settings.json', settings_object=None, error=True, warning=True)
Load and return the settings dictionary for the locality.
This merges the user's settings for their specific locality with the default settings template and the default data dictionary. It also performs variable substitution. The result is a fully resolved settings dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings_file
|
str
|
Path to the settings file. Defaults to "in/settings.json". |
'in/settings.json'
|
settings_object
|
dict
|
Optional settings object to use instead of loading from a file. |
None
|
error
|
bool
|
If True, raises an error if the settings file cannot be loaded. Defaults to True. |
True
|
warning
|
bool
|
If True, raises a warning if the settings file cannot be loaded. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
dict
|
The fully resolved settings dictionary. |
Source code in openavmkit/pipeline.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|
mark_horizontal_equity_clusters_per_model_group_sup
mark_horizontal_equity_clusters_per_model_group_sup(sup, settings, verbose=False, do_land_clusters=True, do_impr_clusters=True)
Cluster parcels for a horizontal equity study by assigning horizontal equity cluster IDs.
This is done for each model group within a SalesUniversePair. Marking IDs ahead of time
allows for more efficient processing later. Delegates to
openavmkit.horizontal_equity_study.mark_horizontal_equity_clusters_per_model_group_sup
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
settings
|
dict
|
Configuration settings. |
required |
verbose
|
bool
|
If True, prints verbose output. Defaults to False. |
False
|
do_land_clusters
|
bool
|
If True, enables land clustering. Defaults to True. |
True
|
do_impr_clusters
|
bool
|
If True, enables improvement clustering. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
SalesUniversePair
|
Updated SalesUniversePair with horizontal equity clusters marked. |
Source code in openavmkit/pipeline.py
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 |
|
mark_ss_ids_per_model_group_sup
mark_ss_ids_per_model_group_sup(sup, settings, verbose=False)
Cluster parcels for a sales scrutiny study by assigning sales scrutiny IDs.
This function processes each model group within the provided SalesUniversePair, identifies clusters of parcels for scrutiny, and writes the cluster identifiers into a new field on the universe DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
settings
|
dict
|
Configuration settings. |
required |
verbose
|
bool
|
If True, prints verbose output during processing. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
SalesUniversePair
|
Updated SalesUniversePair with marked sales scrutiny IDs. |
Source code in openavmkit/pipeline.py
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 |
|
process_sales
process_sales(sup, settings, verbose=False)
Process sales data within a SalesUniversePair.
This function cleans invalid sales, applies time adjustments, and updates the SalesUniversePair with the enriched sales DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
settings
|
dict
|
Configuration settings. |
required |
verbose
|
bool
|
If True, prints verbose output during processing. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
SalesUniversePair
|
Updated SalesUniversePair with processed sales data. |
Source code in openavmkit/pipeline.py
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
|
read_pickle
read_pickle(path)
Read and return data from a pickle file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
Path to the pickle file. |
required |
Returns:
Type | Description |
---|---|
Any
|
The object loaded from the pickle file. |
Source code in openavmkit/pipeline.py
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 |
|
run_and_write_ratio_study_breakdowns
run_and_write_ratio_study_breakdowns(settings)
Run ratio study breakdowns and write the results to disk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
Configuration settings for the ratio study. |
required |
Source code in openavmkit/pipeline.py
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 |
|
run_models
run_models(sup, settings, save_params=True, use_saved_params=True, save_results=True, verbose=False, run_main=True, run_vacant=True, run_hedonic=True, run_ensemble=True, do_shaps=False, do_plots=False)
Runs predictive models on the given SalesUniversePair.
This function takes detailed instructions from the provided settings dictionary and handles all the internal details like splitting the data, training the models, and saving the results. It performs basic statistic analysis on each model, and optionally combines results into an ensemble model.
If "run_main" is true, it will run normal models as well as hedonic models (if the user so specifies), "hedonic" in this context meaning models that attempt to generate a land value and an improvement value separately. If "run_vacant" is true, it will run vacant models as well -- models that only use vacant models as evidence to generate land values.
This function iterates over model groups and runs models for both main and vacant cases.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
settings
|
dict
|
The settings dictionary. |
required |
save_params
|
bool
|
Whether to save model parameters. |
True
|
use_saved_params
|
bool
|
Whether to use saved model parameters. |
True
|
save_results
|
bool
|
Whether to save model results. |
True
|
verbose
|
bool
|
If True, prints additional information. |
False
|
run_main
|
bool
|
Whether to run main (non-vacant) models. |
True
|
run_vacant
|
bool
|
Whether to run vacant models. |
True
|
run_hedonic
|
bool
|
Whether to run hedonic models. |
True
|
run_ensemble
|
bool
|
Whether to run ensemble models. |
True
|
do_shaps
|
bool
|
Whether to compute SHAP values. |
False
|
do_plots
|
bool
|
Whether to plot scatterplots |
False
|
Returns:
Type | Description |
---|---|
MultiModelResults
|
The MultiModelResults containing all model results and benchmarks. |
Source code in openavmkit/pipeline.py
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 |
|
run_sales_scrutiny
run_sales_scrutiny(sup, settings, drop_cluster_outliers=False, drop_heuristic_outliers=True, verbose=False)
Run sales scrutiny analysis for each model group within a SalesUniversePair.
- Performs basic sales validation heuristics
- Optionally drops manually excluded sales flagged by user
- Runs a cluster-based sales scrutiny analysis report
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
settings
|
dict
|
Configuration settings. |
required |
drop_cluster_outliers
|
bool
|
If True, drops invalid sales identified through cluster analysis. Defaults to False. |
False
|
drop_heuristic_outliers
|
bool
|
If True, drops invalid sales identified through heuristics. Defaults to True. |
True
|
verbose
|
bool
|
If True, enables verbose logging. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
SalesUniversePair
|
Updated SalesUniversePair after sales scrutiny analysis. |
Source code in openavmkit/pipeline.py
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 |
|
run_sales_scrutiny_per_model_group_sup
run_sales_scrutiny_per_model_group_sup(sup, settings, drop=True, verbose=False)
Run sales scrutiny analysis for each model group within a SalesUniversePair.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
settings
|
dict
|
Configuration settings. |
required |
drop
|
bool
|
If True, drops invalid sales after scrutiny. Defaults to True. |
True
|
verbose
|
bool
|
If True, enables verbose logging. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
SalesUniversePair
|
Updated SalesUniversePair after sales scrutiny analysis. |
Source code in openavmkit/pipeline.py
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 |
|
tag_model_groups_sup
tag_model_groups_sup(sup, settings, verbose=False)
Tag model groups for a SalesUniversePair.
This function applies user-specified filters that identify rows belonging to
particular model groups, then writes the results to the model_group
field.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
settings
|
dict
|
Configuration settings. |
required |
verbose
|
bool
|
If True, enables verbose output. |
False
|
Returns:
Type | Description |
---|---|
SalesUniversePair
|
Updated SalesUniversePair with tagged model groups. |
Source code in openavmkit/pipeline.py
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
|
try_models
try_models(sup, settings, save_params=True, use_saved_params=True, verbose=False, run_main=True, run_vacant=True, run_hedonic=True, run_ensemble=True, do_shaps=False, do_plots=False)
Tries out predictive models on the given SalesUniversePair. Optimized for speed and iteration, doesn't finalize results or write anything to disk.
This function takes detailed instructions from the provided settings dictionary and handles all the internal details like splitting the data, training the models, and saving the results. It performs basic statistic analysis on each model, and optionally combines results into an ensemble model.
If "run_main" is true, it will run normal models as well as hedonic models (if the user so specifies), "hedonic" in this context meaning models that attempt to generate a land value and an improvement value separately. If "run_vacant" is true, it will run vacant models as well -- models that only use vacant models as evidence to generate land values.
This function delegates the model execution to openavmkit.benchmark.run_models
with the given settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
settings
|
dict
|
Configuration settings. |
required |
save_params
|
bool
|
Whether to save model parameters. Defaults to True. |
True
|
use_saved_params
|
bool
|
Whether to use saved model parameters. Defaults to True. |
True
|
verbose
|
bool
|
If True, enables verbose output. Defaults to False. |
False
|
run_main
|
bool
|
Flag to run main models. Defaults to True. |
True
|
run_vacant
|
bool
|
Flag to run vacant models. Defaults to True. |
True
|
run_hedonic
|
bool
|
Flag to run hedonic models. Defaults to True. |
True
|
run_ensemble
|
bool
|
Flag to run ensemble models. Defaults to True. |
True
|
do_shaps
|
bool
|
Flag to run SHAP analysis. Defaults to False. |
False
|
do_plots
|
bool
|
Flag to plot scatterplots. Defaults to False. |
False
|
Source code in openavmkit/pipeline.py
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 |
|
try_variables
try_variables(sup, settings, verbose=False, plot=False, do_report=False)
Run tests on variables to figure out which might be the most predictive.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Your data |
required |
settings
|
dict
|
Settings dictionary |
required |
verbose
|
bool
|
If True, prints detailed logs during data loading. Defaults to False. |
False
|
plot
|
bool
|
If True, prints visual plots. Defaults to False. |
False
|
do_report
|
bool
|
If True, generates PDF reports. Defaults to False. |
False
|
Source code in openavmkit/pipeline.py
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 |
|
write_canonical_splits
write_canonical_splits(sup, settings)
Write canonical splits for the sales DataFrame.
This separates the sales data into training and test sets and stores the keys to disk,
ensuring consistent splits across multiple models for proper ensembling. Delegates to
openavmkit.data._write_canonical_splits
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
settings
|
dict
|
Configuration settings. |
required |
Source code in openavmkit/pipeline.py
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 |
|
write_checkpoint
write_checkpoint(data, path)
Write data to a checkpoint file.
Saves a pandas DataFrame as Parquet if data
is a DataFrame; otherwise, pickle-serializes data
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Any
|
Data to be checkpointed. |
required |
path
|
str
|
File path for saving the checkpoint. |
required |
Source code in openavmkit/pipeline.py
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 |
|
write_notebook_output_sup
write_notebook_output_sup(sup, prefix='1-assemble')
Write notebook output to disk.
This function saves the SalesUniversePair as a pickle file and writes the corresponding 'universe' and 'sales' DataFrames to Parquet files.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sup
|
SalesUniversePair
|
Sales and universe data. |
required |
prefix
|
str
|
File prefix for naming output files. Defaults to "1-assemble". |
'1-assemble'
|
Source code in openavmkit/pipeline.py
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 |
|