openavmkit.ratio_study
RatioStudy
RatioStudy(predictions, ground_truth, max_trim)
Performs an IAAO-standard Ratio Study, generating all the relevant statistics.
Attributes:
Name | Type | Description |
---|---|---|
predictions |
ndarray
|
Series representing predicted values |
ground_truth |
ndarray
|
Series representing ground truth values (typically observed sale prices) |
count |
int
|
The number of observations |
median_ratio |
float
|
The median value of all |
mean_ratio |
float
|
The mean value of all |
cod |
float
|
The coefficient of dispersion, a measure of variability (lower is better) |
cod_trim |
float
|
The coefficient of dispersion, after outlier ratios outside the interquartile range have been trimmed |
prd |
float
|
The price-related differential, a measure of vertical equity |
prb |
float
|
The price-related bias, a measure of vertical equity |
Initialize a ratio study object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
ndarray
|
Series representing predicted values |
required |
ground_truth
|
ndarray
|
Series representing ground truth values (typically observed sale prices) |
required |
max_trim
|
float
|
The maximum amount of records allowed to be trimmed in a ratio study |
required |
Source code in openavmkit/ratio_study.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
RatioStudyBootstrapped
RatioStudyBootstrapped(predictions, ground_truth, max_trim, confidence_interval=0.95, iterations=1000)
Performs an IAAO-standard Ratio Study, generating all the relevant statistics. This version adds confidence intervals.
Attributes:
Name | Type | Description |
---|---|---|
iterations |
float
|
Number of bootstrap iterations |
confidence_interval |
float
|
The confidence interval (e.g. 0.95 for 95% confidence) |
median_ratio |
ConfidenceStat
|
The median value of all |
mean_ratio |
ConfidenceStat
|
The mean value of all |
cod |
ConfidenceStat
|
The coefficient of dispersion, a measure of variability (lower is better) |
prd |
ConfidenceStat
|
The price-related differential, a measure of vertical equity |
median_ratio_trim |
ConfidenceStat
|
The median value of trimmed |
mean_ratio_trim |
ConfidenceStat
|
The mean value of trimmed |
cod_trim |
ConfidenceStat
|
The coefficient of dispersion, a measure of variability (lower is better), of the trimmed set |
prd_trim |
ConfidenceStat
|
The price-related differential, a measure of vertical equity, of the trimmed set |
Initialize a Bootstrapped ratio study object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
ndarray
|
Series representing predicted values |
required |
ground_truth
|
ndarray
|
Series representing ground truth values (typically observed sale prices) |
required |
max_trim
|
float
|
The maximum amount of records allowed to be trimmed in a ratio study |
required |
confidence_interval
|
float
|
Desired confidence interval (default is 0.95, indicating 95% confidence) |
0.95
|
iterations
|
int
|
How many bootstrap iterations to perform |
1000
|
Source code in openavmkit/ratio_study.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
run_and_write_ratio_study_breakdowns
run_and_write_ratio_study_breakdowns(settings)
Runs ratio studies, with breakdowns, and writes them to disk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
dict
|
Settings dictionary |
required |
Source code in openavmkit/ratio_study.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|