Skip to content

openavmkit.utilities.openstreetmap

OpenStreetMapService

OpenStreetMapService(settings=None)

Service for retrieving and processing data from OpenStreetMap.

Attributes:

Name Type Description
settings dict

Settings dictionary

features dict

Dictionary containing internal features that have been loaded

Initialize the OpenStreetMap service.

Parameters:

Name Type Description Default
settings dict

Configuration settings for the service

None
Source code in openavmkit/utilities/openstreetmap.py
24
25
26
27
28
29
30
31
32
33
def __init__(self, settings: dict = None):
    """Initialize the OpenStreetMap service.

    Parameters
    ----------
    settings : dict
        Configuration settings for the service
    """
    self.settings = settings or {}
    self.features = {}

calculate_distances

calculate_distances(gdf, features, feature_type)

Calculate distances to features, both aggregate and specific top N features.

Parameters:

Name Type Description Default
gdf GeoDataFrame

Parcel GeoDataFrame

required
features GeoDataFrame

Features GeoDataFrame

required
feature_type str

Type of feature (e.g., 'water', 'park')

required

Returns:

Type Description
DataFrame

DataFrame with distances

Source code in openavmkit/utilities/openstreetmap.py
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
def calculate_distances(
    self, gdf: gpd.GeoDataFrame, features: gpd.GeoDataFrame, feature_type: str
) -> pd.DataFrame:
    """Calculate distances to features, both aggregate and specific top N features.

    Parameters
    ----------
    gdf : gpd.GeoDataFrame
        Parcel GeoDataFrame
    features : gpd.GeoDataFrame
        Features GeoDataFrame
    feature_type : str
        Type of feature (e.g., 'water', 'park')

    Returns
    -------
    pd.DataFrame
        DataFrame with distances
    """

    # check if we have already cached this data, AND the settings are the same
    # construct a unique signature:
    signature = {"feature_type": feature_type, "features": hash(features.to_json())}
    if check_cache(
        f"osm/{feature_type}_distances", signature=signature, filetype="df"
    ):
        print("----> using cached distances")
        # if so return the cached version
        return read_cache(f"osm/{feature_type}_distances", "df")

    # Project to UTM for accurate distance calculation
    utm_crs = self._get_utm_crs(gdf.total_bounds)
    gdf_proj = gdf.to_crs(utm_crs)
    features_proj = features.to_crs(utm_crs)

    # Initialize dictionary to store all distance calculations
    distance_data = {}

    # Calculate aggregate distance (distance to nearest feature of any type)
    distance_data[f"dist_to_{feature_type}_any"] = gdf_proj.geometry.apply(
        lambda g: features_proj.geometry.distance(g).min()
    )

    # Calculate distances to top N features if available
    if f"{feature_type}_top" in self.features:
        top_features = self.features[f"{feature_type}_top"]
        for _, feature in top_features.iterrows():
            feature_name = feature["name"]
            feature_geom = feature.geometry
            feature_proj = gpd.GeoSeries([feature_geom]).to_crs(utm_crs)[0]

            distance_data[f"dist_to_{feature_type}_{feature_name}"] = (
                gdf_proj.geometry.apply(lambda g: feature_proj.distance(g))
            )

    # write to cache so we can skip on next run
    write_cache(f"osm/{feature_type}_distances", signature, distance_data, "df")

    # Create DataFrame from all collected distances at once
    return pd.DataFrame(distance_data, index=gdf.index)

calculate_elevation_stats

calculate_elevation_stats(gdf, elevation_data, lon_lat_ranges)

Calculate elevation statistics for each parcel.

Parameters:

Name Type Description Default
gdf GeoDataFrame

Parcel GeoDataFrame

required
elevation_data ndarray

Elevation data as a 2D array

required
lon_lat_ranges Tuple[np.ndarray, np.ndarray])

Longitude and latitude ranges

required

Returns:

Type Description
DataFrame

DataFrame containing elevation statistics

Source code in openavmkit/utilities/openstreetmap.py
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
def calculate_elevation_stats(
    self,
    gdf: gpd.GeoDataFrame,
    elevation_data: np.ndarray,
    lon_lat_ranges: Tuple[np.ndarray, np.ndarray],
) -> pd.DataFrame:
    """Calculate elevation statistics for each parcel.

    Parameters
    ----------
    gdf : gpd.GeoDataFrame
        Parcel GeoDataFrame
    elevation_data : np.ndarray
        Elevation data as a 2D array
    lon_lat_ranges : Tuple[np.ndarray, np.ndarray])
        Longitude and latitude ranges

    Returns
    -------
    pd.DataFrame
        DataFrame containing elevation statistics
    """

    lon_range, lat_range = lon_lat_ranges

    # Initialize arrays for elevation statistics
    avg_elevation = np.full(len(gdf), np.nan)
    avg_slope = np.full(len(gdf), np.nan)

    # For each parcel, calculate elevation statistics
    for i, geom in enumerate(gdf.geometry):
        # Get the bounds of the parcel
        minx, miny, maxx, maxy = geom.bounds

        # Find the indices in the elevation grid that correspond to the parcel bounds
        lon_indices = np.where((lon_range >= minx) & (lon_range <= maxx))[0]
        lat_indices = np.where((lat_range >= miny) & (lat_range <= maxy))[0]

        if len(lon_indices) == 0 or len(lat_indices) == 0:
            continue

        # Extract the elevation data for the parcel
        parcel_elevation = elevation_data[
            lat_indices[0] : lat_indices[-1] + 1,
            lon_indices[0] : lon_indices[-1] + 1,
        ]

        # Calculate average elevation
        avg_elevation[i] = np.mean(parcel_elevation)

        # Calculate slope (simplified)
        # In a real implementation, you would use a more sophisticated method
        if parcel_elevation.shape[0] > 1 and parcel_elevation.shape[1] > 1:
            # Calculate slope in x and y directions
            slope_x = np.gradient(parcel_elevation, axis=1)
            slope_y = np.gradient(parcel_elevation, axis=0)

            # Calculate average slope
            avg_slope[i] = np.mean(np.sqrt(slope_x**2 + slope_y**2))

    # Create a DataFrame with the elevation statistics
    elevation_stats = pd.DataFrame(
        {"avg_elevation": avg_elevation, "avg_slope": avg_slope}, index=gdf.index
    )

    return elevation_stats

enrich_parcels

enrich_parcels(gdf, settings)

Get OpenStreetMap features and prepare them for spatial joins. Returns a dictionary of feature dataframes for use by data.py's spatial join logic.

Parameters:

Name Type Description Default
gdf GeoDataFrame

Parcel GeoDataFrame (used for bbox)

required
settings dict

Settings for enrichment

required

Returns:

Type Description
dict[str, GeoDataFrame]

Dictionary of feature dataframes

Source code in openavmkit/utilities/openstreetmap.py
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
def enrich_parcels(
    self, gdf: gpd.GeoDataFrame, settings: Dict
) -> Dict[str, gpd.GeoDataFrame]:
    """Get OpenStreetMap features and prepare them for spatial joins. Returns a
    dictionary of feature dataframes for use by data.py's spatial join logic.

    Parameters
    ----------
    gdf : gpd.GeoDataFrame
        Parcel GeoDataFrame (used for bbox)
    settings : dict
        Settings for enrichment

    Returns
    -------
    dict[str, gpd.GeoDataFrame]
        Dictionary of feature dataframes
    """
    # Get the bounding box of the GeoDataFrame
    bbox = gdf.total_bounds

    # Dictionary to store all dataframes
    dataframes = {}

    # Process each feature type based on settings
    if settings.get("water_bodies", {}).get("enabled", False):
        water_bodies = self.get_water_bodies(bbox, settings["water_bodies"])
        if not water_bodies.empty:
            # Store both the main and top features in dataframes
            dataframes["water_bodies"] = self.features["water_bodies"]
            dataframes["water_bodies_top"] = self.features["water_bodies_top"]

    if settings.get("transportation", {}).get("enabled", False):
        transportation = self.get_transportation(bbox, settings["transportation"])
        if not transportation.empty:
            dataframes["transportation"] = self.features["transportation"]
            dataframes["transportation_top"] = self.features["transportation_top"]

    if settings.get("educational", {}).get("enabled", False):
        institutions = self.get_educational_institutions(
            bbox, settings["educational"]
        )
        if not institutions.empty:
            dataframes["educational"] = self.features["educational"]
            dataframes["educational_top"] = self.features["educational_top"]

    if settings.get("parks", {}).get("enabled", False):
        parks = self.get_parks(bbox, settings["parks"])
        if not parks.empty:
            dataframes["parks"] = self.features["parks"]
            dataframes["parks_top"] = self.features["parks_top"]

    if settings.get("golf_courses", {}).get("enabled", False):
        golf_courses = self.get_golf_courses(bbox, settings["golf_courses"])
        if not golf_courses.empty:
            dataframes["golf_courses"] = self.features["golf_courses"]
            dataframes["golf_courses_top"] = self.features["golf_courses_top"]

    return dataframes

get_educational_institutions

get_educational_institutions(bbox, settings, use_cache=True)

Get educational institutions from OpenStreetMap. Stores both all institutions and top N largest ones for distance calculations.

Parameters:

Name Type Description Default
bbox Tuple[float, float, float, float])

Bounding box (min_lon, min_lat, max_lon, max_lat)

required
settings dict

Settings for educational institutions including min_area and top_n

required
use_cache bool

Whether to use cached data (default: True)

True

Returns:

Type Description
GeoDataFrame

GeoDataFrame containing all educational institutions

Source code in openavmkit/utilities/openstreetmap.py
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
def get_educational_institutions(
    self,
    bbox: Tuple[float, float, float, float],
    settings: dict,
    use_cache: bool = True,
) -> gpd.GeoDataFrame:
    """Get educational institutions from OpenStreetMap. Stores both all institutions
    and top N largest ones for distance calculations.

    Parameters
    ----------
    bbox : Tuple[float, float, float, float])
        Bounding box (min_lon, min_lat, max_lon, max_lat)
    settings : dict
        Settings for educational institutions including min_area and top_n
    use_cache : bool
        Whether to use cached data (default: True)

    Returns
    -------
    gpd.GeoDataFrame
        GeoDataFrame containing all educational institutions
    """
    if not settings.get("enabled", False):
        return gpd.GeoDataFrame()

    # check if we have already cached this data, AND the settings are the same
    if use_cache and check_cache(
        "osm/educational_institutions", signature=settings, filetype="df"
    ):
        print("----> using cached educational institutions")
        # if so return the cached version
        return read_cache("osm/educational_institutions", "df")

    min_area = settings.get("min_area", 1000)
    top_n = settings.get("top_n", 5)

    # Define tags for educational institutions
    tags = {"amenity": ["university"]}

    # Create polygon from bbox
    polygon = box(bbox[0], bbox[1], bbox[2], bbox[3])

    try:
        # Get educational institutions from OSM
        institutions = ox.features.features_from_polygon(polygon, tags=tags)

        if institutions.empty:
            print(f"No educational institutions found in the area")
            return gpd.GeoDataFrame()

        print(f"Found {len(institutions)} raw educational features")

        # Project to UTM for accurate area calculation
        utm_crs = self._get_utm_crs(bbox)
        institutions_proj = institutions.to_crs(utm_crs)

        # Fill NaN names before dissolving
        if "name" not in institutions_proj.columns:
            print("Warning: 'name' column not found, using 'amenity' as identifier")
            institutions_proj["name"] = institutions_proj["amenity"].fillna(
                "unnamed_institution"
            )
        else:
            institutions_proj["name"] = institutions_proj["name"].fillna(
                "unnamed_institution"
            )

        # Dissolve by name to combine multiple buildings/features of same institution
        institutions_dissolved = institutions_proj.dissolve(
            by="name", as_index=False
        )
        print(
            f"After dissolving by name: {len(institutions_dissolved)} unique institutions"
        )

        # Calculate areas after dissolving
        institutions_dissolved["area"] = institutions_dissolved.geometry.area
        institutions_filtered = institutions_dissolved[
            institutions_dissolved["area"] >= min_area
        ]

        if institutions_filtered.empty:
            print(
                f"No educational institutions found meeting minimum area requirement of {min_area} sq meters"
            )
            return gpd.GeoDataFrame()

        # Project back to WGS84
        institutions_filtered = institutions_filtered.to_crs("EPSG:4326")

        # Clean up names
        institutions_filtered["name"] = (
            institutions_filtered["name"].str.lower().str.replace(" ", "_")
        )
        institutions_filtered["name"] = clean_series(institutions_filtered["name"])

        # Create a copy for top N features
        institutions_top = institutions_filtered.nlargest(top_n, "area").copy()

        # Store both dataframes
        self.features["educational"] = institutions_filtered
        self.features["educational_top"] = institutions_top

        # write to cache so we can skip on next run
        write_cache(
            "osm/educational_institutions", institutions_filtered, settings, "df"
        )

        return institutions_filtered

    except Exception as e:
        print(f"Error processing educational institutions: {str(e)}")
        print(f"Error type: {type(e)}")
        import traceback

        print(f"Traceback: {traceback.format_exc()}")
        return gpd.GeoDataFrame()

get_elevation_data

get_elevation_data(bbox, resolution=30)

Get digital elevation model (DEM) data from USGS.

Parameters:

Name Type Description Default
bbox Tuple[float, float, float, float]):

Bounding box (min_lon, min_lat, max_lon, max_lat)

required
resolution int

Resolution in meters (default: 30m)

30

Returns:

Type Description
ndarray

Elevation data as a 2D array

Source code in openavmkit/utilities/openstreetmap.py
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def get_elevation_data(
    self, bbox: Tuple[float, float, float, float], resolution: int = 30
) -> np.ndarray:
    """Get digital elevation model (DEM) data from USGS.

    Parameters
    ----------
    bbox : Tuple[float, float, float, float]):
        Bounding box (min_lon, min_lat, max_lon, max_lat)
    resolution : int
        Resolution in meters (default: 30m)

    Returns
    -------
    np.ndarray
        Elevation data as a 2D array
    """
    # This is a placeholder. In a real implementation, you would use the USGS API
    # or a library like elevation to download DEM data
    # For now, we'll return a dummy array
    print("DEM data retrieval not implemented yet. Using dummy data.")

    # Create a dummy elevation array
    # In a real implementation, this would be replaced with actual DEM data
    lat_range = np.linspace(bbox[1], bbox[3], 100)
    lon_range = np.linspace(bbox[0], bbox[2], 100)
    lon_grid, lat_grid = np.meshgrid(lon_range, lat_range)

    # Create a simple elevation model (for demonstration)
    elevation = 100 + 50 * np.sin(lon_grid * 10) + 50 * np.cos(lat_grid * 10)

    return elevation, (lon_range, lat_range)

get_golf_courses

get_golf_courses(bbox, settings, use_cache=True)

Get golf courses from OpenStreetMap. Stores both all golf courses and top N largest ones for distance calculations.

Parameters:

Name Type Description Default
bbox Tuple[float, float, float, float]

Bounding box (min_lon, min_lat, max_lon, max_lat)

required
settings dict

Settings for golf courses including min_area and top_n

required

Returns:

Type Description
GeoDataFrame

GeoDataFrame containing all golf courses

Source code in openavmkit/utilities/openstreetmap.py
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
def get_golf_courses(
    self,
    bbox: Tuple[float, float, float, float],
    settings: dict,
    use_cache: bool = True,
) -> gpd.GeoDataFrame:
    """Get golf courses from OpenStreetMap. Stores both all golf courses and top N
    largest ones for distance calculations.

    Parameters
    ----------
    bbox : Tuple[float, float, float, float]
        Bounding box (min_lon, min_lat, max_lon, max_lat)
    settings : dict
        Settings for golf courses including min_area and top_n

    Returns
    -------
    gpd.GeoDataFrame
        GeoDataFrame containing all golf courses
    """
    if not settings.get("enabled", False):
        return gpd.GeoDataFrame()

    # check if we have already cached this data, AND the settings are the same
    if use_cache and check_cache(
        "osm/golf_courses", signature=settings, filetype="df"
    ):
        print("----> using cached golf courses")
        # if so return the cached version
        return read_cache("osm/golf_courses", "df")

    min_area = settings.get("min_area", 10000)
    top_n = settings.get("top_n", 3)

    # Define tags for golf courses
    tags = {"leisure": ["golf_course"]}

    # Create polygon from bbox
    polygon = box(bbox[0], bbox[1], bbox[2], bbox[3])

    # Get golf courses from OSM
    golf_courses = ox.features.features_from_polygon(polygon, tags=tags)

    if golf_courses.empty:
        return gpd.GeoDataFrame()

    # Project to UTM for accurate area calculation
    utm_crs = self._get_utm_crs(bbox)
    golf_courses_proj = golf_courses.to_crs(utm_crs)

    # Calculate areas and filter by minimum area
    golf_courses_proj["area"] = golf_courses_proj.geometry.area
    golf_courses_filtered = golf_courses_proj[golf_courses_proj["area"] >= min_area]

    if golf_courses_filtered.empty:
        return gpd.GeoDataFrame()

    # Project back to WGS84
    golf_courses_filtered = golf_courses_filtered.to_crs("EPSG:4326")

    # Clean up names
    golf_courses_filtered["name"] = golf_courses_filtered["name"].fillna(
        "unnamed_golf_course"
    )
    golf_courses_filtered["name"] = (
        golf_courses_filtered["name"].str.lower().str.replace(" ", "_")
    )
    golf_courses_filtered["name"] = clean_series(golf_courses_filtered["name"])

    # Create a copy for top N features
    golf_courses_top = golf_courses_filtered.nlargest(top_n, "area").copy()

    # Store both dataframes
    self.features["golf_courses"] = golf_courses_filtered
    self.features["golf_courses_top"] = golf_courses_top

    # write to cache so we can skip on next run
    write_cache("osm/golf_courses", golf_courses_filtered, settings, "df")

    return golf_courses_filtered

get_parks

get_parks(bbox, settings, use_cache=True)

Get parks from OpenStreetMap. Stores both all parks and top N largest ones for distance calculations.

Parameters:

Name Type Description Default
bbox Tuple[float, float, float, float])

Bounding box (min_lon, min_lat, max_lon, max_lat)

required
settings dict

Settings for parks including min_area and top_n

required
use_cache bool

Whether to use cached data (default: True)

True

Returns:

Type Description
gpd.GeoDataFrame: GeoDataFrame containing all parks
Source code in openavmkit/utilities/openstreetmap.py
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
def get_parks(
    self,
    bbox: Tuple[float, float, float, float],
    settings: dict,
    use_cache: bool = True,
) -> gpd.GeoDataFrame:
    """Get parks from OpenStreetMap. Stores both all parks and top N largest ones
    for distance calculations.

    Parameters
    ----------
    bbox : Tuple[float, float, float, float])
        Bounding box (min_lon, min_lat, max_lon, max_lat)
    settings : dict
        Settings for parks including min_area and top_n
    use_cache : bool
        Whether to use cached data (default: True)

    Returns
    -------
    gpd.GeoDataFrame: GeoDataFrame containing all parks
    """
    if not settings.get("enabled", False):
        return gpd.GeoDataFrame()

    # check if we have already cached this data, AND the settings are the same
    if use_cache and check_cache("osm/parks", signature=settings, filetype="df"):
        print("----> using cached parks")
        # if so return the cached version
        return read_cache("osm/parks", "df")

    min_area = settings.get("min_area", 1000)
    top_n = settings.get("top_n", 5)

    # Define tags for parks
    tags = {
        "leisure": ["park", "garden", "playground"],
        "landuse": ["recreation_ground"],
    }

    # Create polygon from bbox
    polygon = box(bbox[0], bbox[1], bbox[2], bbox[3])

    # Get parks from OSM
    parks = ox.features.features_from_polygon(polygon, tags=tags)

    if parks.empty:
        return gpd.GeoDataFrame()

    # Project to UTM for accurate area calculation
    utm_crs = self._get_utm_crs(bbox)
    parks_proj = parks.to_crs(utm_crs)

    # Calculate areas and filter by minimum area
    parks_proj["area"] = parks_proj.geometry.area
    parks_filtered = parks_proj[parks_proj["area"] >= min_area]

    if parks_filtered.empty:
        return gpd.GeoDataFrame()

    # Project back to WGS84
    parks_filtered = parks_filtered.to_crs("EPSG:4326")

    # Clean up names
    parks_filtered["name"] = parks_filtered["name"].fillna("unnamed_park")
    parks_filtered["name"] = (
        parks_filtered["name"].str.lower().str.replace(" ", "_")
    )
    parks_filtered["name"] = clean_series(parks_filtered["name"])

    # Create a copy for top N features
    parks_top = parks_filtered.nlargest(top_n, "area").copy()

    # Store both dataframes
    self.features["parks"] = parks_filtered
    self.features["parks_top"] = parks_top

    # write to cache so we can skip on next run
    write_cache("osm/parks", parks_filtered, settings, "df")

    return parks_filtered

get_transportation

get_transportation(bbox, settings, use_cache=True)

Get major transportation networks (roads, railways) from OpenStreetMap. Stores both all routes and top N longest ones for distance calculations.

Parameters:

Name Type Description Default
bbox Tuple[float, float, float, float]

Bounding box (min_lon, min_lat, max_lon, max_lat)

required
settings dict

Settings for transportation including min_length and top_n

required
use_cache bool

Whether to use cached data (default: True)

True

Returns:

Type Description
GeoDataFrame

GeoDataFrame containing all transportation routes

Source code in openavmkit/utilities/openstreetmap.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
def get_transportation(
    self,
    bbox: Tuple[float, float, float, float],
    settings: dict,
    use_cache: bool = True,
) -> gpd.GeoDataFrame:
    """Get major transportation networks (roads, railways) from OpenStreetMap.
    Stores both all routes and top N longest ones for distance calculations.

    Parameters
    ----------
    bbox : Tuple[float, float, float, float]
        Bounding box (min_lon, min_lat, max_lon, max_lat)
    settings : dict
        Settings for transportation including min_length and top_n
    use_cache : bool
        Whether to use cached data (default: True)

    Returns
    -------
    gpd.GeoDataFrame
        GeoDataFrame containing all transportation routes
    """
    if not settings.get("enabled", False):
        return gpd.GeoDataFrame()

    # check if we have already cached this data, AND the settings are the same
    if use_cache and check_cache(
        "osm/transportation", signature=settings, filetype="df"
    ):
        print("----> using cached transportation")
        # if so return the cached version
        return read_cache("osm/transportation", "df")

    min_length = settings.get("min_length", 1000)
    top_n = settings.get("top_n", 5)

    # Define tags for major transportation routes
    tags = {"railway": ["rail", "subway", "light_rail", "monorail", "tram"]}

    # Create polygon from bbox
    polygon = box(bbox[0], bbox[1], bbox[2], bbox[3])

    # Get transportation from OSM
    transportation = ox.features.features_from_polygon(polygon, tags=tags)

    if transportation.empty:
        print("No transportation networks found in the area")
        return gpd.GeoDataFrame()

    # Project to UTM for accurate length calculation
    utm_crs = self._get_utm_crs(bbox)
    transportation_proj = transportation.to_crs(utm_crs)

    # Calculate lengths and filter by minimum length
    transportation_proj["length"] = transportation_proj.geometry.length
    transportation_filtered = transportation_proj[
        transportation_proj["length"] >= min_length
    ]

    if transportation_filtered.empty:
        print(
            "No transportation networks found meeting minimum length requirement of {min_length} meters"
        )
        return gpd.GeoDataFrame()

    # Project back to WGS84
    transportation_filtered = transportation_filtered.to_crs("EPSG:4326")

    # Clean up names
    transportation_filtered["name"] = transportation_filtered["name"].fillna(
        "unnamed_route"
    )
    transportation_filtered["name"] = (
        transportation_filtered["name"].str.lower().str.replace(" ", "_")
    )
    transportation_filtered["name"] = clean_series(transportation_filtered["name"])

    # Create a copy for top N features
    transportation_top = transportation_filtered.nlargest(top_n, "length").copy()

    # Store both dataframes
    self.features["transportation"] = transportation_filtered
    self.features["transportation_top"] = transportation_top

    # write to cache so we can skip on next run
    write_cache("osm/transportation", transportation_filtered, settings, "df")

    return transportation_filtered

get_water_bodies

get_water_bodies(bbox, settings, use_cache=True)

Get water bodies (rivers, lakes, etc.) from OpenStreetMap. Stores both all water bodies and top N largest ones for distance calculations.

Parameters:

Name Type Description Default
bbox Tuple[float, float, float, float]):

Bounding box (min_lon, min_lat, max_lon, max_lat)

required
settings dict

Settings for water bodies including min_area and top_n

required
use_cache bool

Whether to use cached data. Defaults to True

True

Returns:

Type Description
GeoDataFrame

GeoDataFrame containing all water bodies

Source code in openavmkit/utilities/openstreetmap.py
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def get_water_bodies(
    self,
    bbox: Tuple[float, float, float, float],
    settings: dict,
    use_cache: bool = True,
) -> gpd.GeoDataFrame:
    """Get water bodies (rivers, lakes, etc.) from OpenStreetMap. Stores both all
    water bodies and top N largest ones for distance calculations.

    Parameters
    ----------
    bbox : Tuple[float, float, float, float]):
        Bounding box (min_lon, min_lat, max_lon, max_lat)
    settings : dict
        Settings for water bodies including min_area and top_n
    use_cache : bool
        Whether to use cached data. Defaults to True

    Returns
    -------
    gpd.GeoDataFrame
        GeoDataFrame containing all water bodies
    """
    if not settings.get("enabled", False):
        return gpd.GeoDataFrame()

    # check if we have already cached this data, AND the settings are the same
    if use_cache and check_cache(
        "osm/water_bodies", signature=settings, filetype="df"
    ):
        print("----> using cached water bodies")
        # if so return the cached version
        return read_cache("osm/water_bodies", "df")

    min_area = settings.get("min_area", 10000)
    top_n = settings.get("top_n", 5)

    # Define tags for water bodies
    tags = {
        "natural": ["water", "bay", "strait"],
        "water": ["river", "lake", "reservoir", "canal", "stream"],
    }

    # Create polygon from bbox
    polygon = box(bbox[0], bbox[1], bbox[2], bbox[3])

    try:
        # Get water bodies from OSM
        print("Getting water bodies from OSM...")
        water_bodies = ox.features.features_from_polygon(polygon, tags=tags)

        if water_bodies.empty:
            return gpd.GeoDataFrame()

        # Project to UTM for accurate area calculation
        utm_crs = self._get_utm_crs(bbox)
        water_bodies_proj = water_bodies.to_crs(utm_crs)

        # Calculate areas and filter by minimum area
        water_bodies_proj["area"] = water_bodies_proj.geometry.area
        water_bodies_filtered = water_bodies_proj[
            water_bodies_proj["area"] >= min_area
        ]

        if water_bodies_filtered.empty:
            return gpd.GeoDataFrame()

        # Project back to WGS84
        water_bodies_filtered = water_bodies_filtered.to_crs("EPSG:4326")

        # Clean up names
        water_bodies_filtered["name"] = water_bodies_filtered["name"].fillna(
            "unnamed_water_body"
        )
        water_bodies_filtered["name"] = (
            water_bodies_filtered["name"].str.lower().str.replace(" ", "_")
        )
        water_bodies_filtered["name"] = clean_series(water_bodies_filtered["name"])

        # Create a copy for top N features
        water_bodies_top = water_bodies_filtered.nlargest(top_n, "area").copy()

        # Store both dataframes
        self.features["water_bodies"] = water_bodies_filtered
        self.features["water_bodies_top"] = water_bodies_top

        # write to cache so we can skip on next run
        write_cache("osm/water_bodies", water_bodies_filtered, settings, "df")

        return water_bodies_filtered

    except Exception as e:
        print(f"ERROR in get_water_bodies: {str(e)}")
        import traceback

        print(f"Traceback: {traceback.format_exc()}")
        return gpd.GeoDataFrame()

init_service_openstreetmap

init_service_openstreetmap(settings=None)

Initialize an OpenStreetMap service with the provided settings.

Parameters:

Name Type Description Default
settings dict

Configuration settings for the service

None

Returns:

Type Description
OpenStreetMapService

Initialized OpenStreetMap service

Source code in openavmkit/utilities/openstreetmap.py
762
763
764
765
766
767
768
769
770
771
772
773
774
775
def init_service_openstreetmap(settings: Dict = None) -> OpenStreetMapService:
    """Initialize an OpenStreetMap service with the provided settings.

    Parameters
    ----------
    settings : dict
        Configuration settings for the service

    Returns
    -------
    OpenStreetMapService
        Initialized OpenStreetMap service
    """
    return OpenStreetMapService(settings)