openavmkit.utilities.stats
ConfidenceStat
ConfidenceStat(value, confidence_interval, low, high)
Any statistic along with it's confidence interval upper and lower bounds, and whether it is statistically significant
Attributes:
Name | Type | Description |
---|---|---|
value |
float
|
The base value of the statistic |
confidence_interval |
float
|
The % value of the confidence interval (e.g. 0.95 for 95% confidence interval) |
low |
float
|
The lower bound of the confidence interval |
high |
float
|
The upper bound of the confidence interval |
Source code in openavmkit/utilities/stats.py
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 |
|
calc_chds
calc_chds(df_in, field_cluster, field_value)
Calculate the Coefficient of Horizontal Dispersion (CHD) for each cluster in a DataFrame.
CHD is the same statistic as COD, the Coefficient of Dispersion, but calculated for horizontal equity clusters and used to measure horizontal dispersion, on the theory that similar properties in similar locations should have similar valuations. The use of the name "CHD" is chosen to avoid confusion because assessors strongly associate "COD" with sales ratio studies.
This function computes the CHD for each unique cluster in the input DataFrame based on the values in the specified field.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_in
|
DataFrame
|
Input DataFrame |
required |
field_cluster
|
str
|
Name of the column representing cluster identifiers. |
required |
field_value
|
str
|
Name of the column containing the values for COD calculation |
required |
Returns:
Type | Description |
---|---|
A Series of COD values for each row, aligned with df_in
|
|
Source code in openavmkit/utilities/stats.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|
calc_cod
calc_cod(values)
Calculate the Coefficient of Dispersion (COD) for an array of values.
COD is defined as the average absolute deviation from the median, divided by the median, multiplied by 100. Special cases are handled if the median is zero.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
values
|
ndarray
|
Array of numeric values. |
required |
Returns:
Type | Description |
---|---|
float
|
The COD percentage. |
Source code in openavmkit/utilities/stats.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
calc_cod_bootstrap
calc_cod_bootstrap(values, confidence_interval=0.95, iterations=10000, seed=777)
Calculate COD using bootstrapping.
This function bootstraps the input values (resampling with replacement) to generate a distribution of CODs, then returns the median COD along with the lower and upper bounds of the confidence interval.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
values
|
ndarray
|
Array of numeric values. |
required |
confidence_interval
|
float
|
The desired confidence level. Defaults to 0.95. |
0.95
|
iterations
|
int
|
Number of bootstrap iterations. Defaults to 10000. |
10000
|
seed
|
int
|
Random seed for reproducibility. Defaults to 777. |
777
|
Returns:
Type | Description |
---|---|
tuple[float, float, float]
|
A tuple containing the median COD, lower bound, and upper bound of the confidence interval. |
Source code in openavmkit/utilities/stats.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
|
calc_correlations
calc_correlations(X, threshold=0.1, do_plots=False)
Calculate correlations and iteratively drop variables with low combined scores.
This function computes the correlation matrix of X
, then calculates a combined score
for each variable based on its correlation strength with the target variable and its
average correlation with other variables. Variables whose scores fall below the
specified threshold
are removed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
Input DataFrame containing the variables to evaluate. |
required |
threshold
|
float
|
Minimum acceptable combined score for variables. Variables with a score below this value will be dropped. Defaults to 0.1. |
0.1
|
do_plots
|
bool
|
If True, plot the initial and final correlation heatmaps. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
dict
|
Dictionary with two keys:
|
Source code in openavmkit/utilities/stats.py
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
|
calc_cross_validation_score
calc_cross_validation_score(X, y)
Calculate cross-validation score using negative mean squared error.
This function fits a LinearRegression model using 5-fold cross validation and returns the mean cross-validated MSE (positive value).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array - like or DataFrame
|
Input features for modeling. |
required |
y
|
array - like or Series
|
Target variable. |
required |
Returns:
Type | Description |
---|---|
float
|
The mean cross-validated mean squared error. |
Source code in openavmkit/utilities/stats.py
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 |
|
calc_elastic_net_regularization
calc_elastic_net_regularization(X, y, threshold_fraction=0.05)
Calculate Elastic Net regularization coefficients while iteratively dropping variables with low coefficients.
This function standardizes X
, fits an Elastic Net model, and iteratively removes
variables whose absolute coefficients fall below a fraction of the maximum coefficient.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
Input features DataFrame. |
required |
y
|
Series
|
Target variable series. |
required |
threshold_fraction
|
float
|
Fraction of the maximum coefficient below which variables are dropped. Defaults to 0.05. |
0.05
|
Returns:
Type | Description |
---|---|
dict
|
Dictionary with two keys:
|
Source code in openavmkit/utilities/stats.py
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 |
|
calc_mse
calc_mse(prediction, ground_truth)
Calculate the Mean Squared Error (MSE) between predictions and ground truth.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prediction
|
ndarray
|
Array of predicted values. |
required |
ground_truth
|
ndarray
|
Array of true values. |
required |
Returns:
Type | Description |
---|---|
float
|
The MSE value. |
Source code in openavmkit/utilities/stats.py
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 |
|
calc_mse_r2_adj_r2
calc_mse_r2_adj_r2(predictions, ground_truth, num_vars)
Calculate the Mean Squared Error (MSE), r-squared, and adjusted r-squared
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
ndarray
|
Array of predicted values. |
required |
ground_truth
|
ndarray
|
Array of true values. |
required |
num_vars
|
int
|
Number of independent variables used to produce the predictions |
required |
Returns:
Type | Description |
---|---|
tuple[float, float, float]
|
A tuple containing three values:
|
Source code in openavmkit/utilities/stats.py
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 |
|
calc_p_values_recursive_drop
calc_p_values_recursive_drop(X, y, sig_threshold=0.05)
Recursively drop variables with p-values above a specified significance threshold.
Fits an OLS model on X
and iteratively removes the variable with the highest
p-value until all remaining variables have p-values below the threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
Input features DataFrame. |
required |
y
|
Series
|
Target variable series. |
required |
sig_threshold
|
float
|
Significance threshold for p-values. Variables with p-values above this threshold will be dropped. Defaults to 0.05. |
0.05
|
Returns:
Type | Description |
---|---|
dict
|
Dictionary with two keys:
|
Raises:
Type | Description |
---|---|
ValueError
|
If the OLS regression fails or no variables remain. |
Source code in openavmkit/utilities/stats.py
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 |
|
calc_prb
calc_prb(predictions, ground_truth, confidence_interval=0.95)
Calculate the Price Related Bias (PRB) metric using a regression-based approach.
This function fits an OLS model on the transformed ratios of predictions to ground truth, then returns the PRB value along with its lower and upper confidence bounds.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
ndarray
|
Array of predicted values. |
required |
ground_truth
|
ndarray
|
Array of ground truth values. |
required |
confidence_interval
|
float
|
Desired confidence interval. Defaults to 0.95. |
0.95
|
Returns:
Type | Description |
---|---|
tuple[float, float, float]
|
A tuple containing:
|
Raises:
Type | Description |
---|---|
ValueError
|
If |
Source code in openavmkit/utilities/stats.py
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
|
calc_prd
calc_prd(predictions, ground_truth)
Calculate the Price Related Differential (PRD).
PRD is computed as the ratio of the mean ratio to the weighted mean ratio of predictions to ground truth.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
ndarray
|
Array of predicted values. |
required |
ground_truth
|
ndarray
|
Array of ground truth values. |
required |
Returns:
Type | Description |
---|---|
float
|
The PRD value. |
Source code in openavmkit/utilities/stats.py
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
calc_prd_bootstrap
calc_prd_bootstrap(predictions, ground_truth, confidence_interval=0.95, iterations=10000, seed=777)
Calculate PRD with bootstrapping.
This function bootstraps the prediction-to-ground_truth ratios to produce a distribution of PRD values and returns the lower bound, median, and upper bound of the confidence interval.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
ndarray
|
Array of predicted values. |
required |
ground_truth
|
ndarray
|
Array of ground truth values. |
required |
confidence_interval
|
float
|
The desired confidence level. Defaults to 0.95. |
0.95
|
iterations
|
int
|
Number of bootstrap iterations. Defaults to 10000. |
10000
|
seed
|
int
|
Random seed for reproducibility. Defaults to 777. |
777
|
Returns:
Type | Description |
---|---|
tuple[float, float, float]
|
A tuple containing median PRD, the lower bound, and upper bound of the confidence interval. |
Source code in openavmkit/utilities/stats.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
|
calc_r2
calc_r2(df, variables, y)
Calculate R² and adjusted R² values for each variable.
For each variable in the provided list, an OLS model is fit and the R², adjusted R², and the sign of the coefficient are recorded.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame containing the variables. |
required |
variables
|
list[str]
|
List of variable names to evaluate. |
required |
y
|
Series
|
Target variable series. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with columns for variable, R², adjusted R², and coefficient sign. |
Source code in openavmkit/utilities/stats.py
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
|
calc_ratio_stats_bootstrap
calc_ratio_stats_bootstrap(predictions, ground_truth, confidence_interval=0.95, iterations=10000, seed=777)
Calculate ratio study statistics (Median ratio, Mean ratio, COD, PRD) with bootstrap percentile confidence intervals, following IAAO definitions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
ndarray
|
An array of predicted values |
required |
ground_truth
|
ndarray
|
An array of corresponding ground truth (e.g. sale price) values |
required |
confidence_interval
|
float
|
The size of the confidence interval (e.g. 0.95 = 95% confidence) |
0.95
|
iterations
|
int
|
The number of bootstrap iterations to perform. Defaults to 10,000. |
10000
|
seed
|
int
|
Random seed, for reproducibility. Defaults to 777. |
777
|
Returns:
Type | Description |
---|---|
dict
|
{ "median_ratio": ConfidenceStat, "mean_ratio": ConfidenceStat, "cod": ConfidenceStat, # COD = 100 * mean(|ri - median(r)|) / median(r) "prd": ConfidenceStat # PRD = mean(r) / weighted_mean(r) } |
Source code in openavmkit/utilities/stats.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
calc_t_values
calc_t_values(X, y)
Calculate t-values for an OLS model.
Fits an ordinary least squares regression of y
on X
and returns the t-values
of the estimated coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
Input features DataFrame (should include a constant term column). |
required |
y
|
Series
|
Target variable series. |
required |
Returns:
Type | Description |
---|---|
Series
|
Series of t-values corresponding to each coefficient in |
Source code in openavmkit/utilities/stats.py
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 |
|
calc_t_values_recursive_drop
calc_t_values_recursive_drop(X, y, threshold=2)
Recursively drop variables with t-values below a given threshold.
Fits an OLS model on X
and iteratively removes the variable with the smallest
absolute t-value until all remaining variables have |t-value| above the threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
Input features DataFrame. |
required |
y
|
Series
|
Target variable series. |
required |
threshold
|
float
|
Minimum acceptable absolute t-value. Variables with |t-value| below this threshold will be dropped. Defaults to 2. |
2
|
Returns:
Type | Description |
---|---|
dict
|
Dictionary with two keys:
|
Source code in openavmkit/utilities/stats.py
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 |
|
calc_vif
calc_vif(X)
Calculate the Variance Inflation Factor (VIF) for each variable in a DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
Input features DataFrame. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with columns:
|
Source code in openavmkit/utilities/stats.py
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 |
|
calc_vif_recursive_drop
calc_vif_recursive_drop(X, threshold=10.0, settings=None)
Recursively drop variables with a Variance Inflation Factor (VIF) exceeding the threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
Input features DataFrame. |
required |
threshold
|
float
|
Maximum acceptable VIF. Variables with VIF above this threshold will be removed. Defaults to 10.0. |
10.0
|
settings
|
dict
|
Settings dictionary containing field classifications, if needed for VIF computation. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
dict
|
Dictionary with two keys:
|
Raises:
Type | Description |
---|---|
ValueError
|
If no columns remain for VIF calculation. |
Source code in openavmkit/utilities/stats.py
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 |
|
plot_correlation
plot_correlation(corr, title='Correlation of Variables')
Plot a heatmap of a correlation matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
corr
|
DataFrame
|
Correlation matrix as a DataFrame. |
required |
title
|
str
|
Title of the plot. Defaults to "Correlation of Variables". |
'Correlation of Variables'
|
Source code in openavmkit/utilities/stats.py
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
|
quick_median_chd_pl
quick_median_chd_pl(df, field_value, field_cluster)
Calculate the median CHD for groups in a Polars DataFrame.
This function filters out missing values for the given value field, groups the data by the specified cluster field, computes COD for each group, and returns the median COD value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input Polars DataFrame. |
required |
field_value
|
str
|
Name of the field containing values for COD calculation. |
required |
field_cluster
|
str
|
Name of the field to group by for computing COD. |
required |
Returns:
Type | Description |
---|---|
float
|
The median COD value across all groups. |
Source code in openavmkit/utilities/stats.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
trim_outliers
trim_outliers(values, max_percent=0.1, iqr_factor=1.5)
Trim outliers using IQR fences per IAAO guidance, with a max trim cap. Fails immediately if NaNs are detected.
1) Compute Q1, Q3, IQR = Q3 - Q1. 2) Trim values outside [Q1 - iqr_factorIQR, Q3 + iqr_factorIQR]. 3) If more than max_percent would be removed, instead trim by symmetric quantile cut so total trimmed <= max_percent.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
values
|
ndarray
|
1D numeric array with no NaNs allowed. |
required |
max_percent
|
float
|
Maximum fraction to remove (e.g., 0.10 = 10%). |
0.1
|
iqr_factor
|
float
|
1.5 for standard outliers, 3.0 for extreme outliers. |
1.5
|
Returns:
Type | Description |
---|---|
ndarray
|
Trimmed array according to the above rules. |
Raises:
Type | Description |
---|---|
ValueError
|
If any NaN is detected in |
Source code in openavmkit/utilities/stats.py
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
trim_outliers_mask
trim_outliers_mask(values, max_percent=0.1, iqr_factor=1.5)
Trim outliers using IQR fences per IAAO guidance, with a max trim cap. Fails immediately if NaNs are detected.
1) Compute Q1, Q3, IQR = Q3 - Q1. 2) Trim values outside [Q1 - iqr_factorIQR, Q3 + iqr_factorIQR]. 3) If more than max_percent would be removed, instead trim by symmetric quantile cut so total trimmed <= max_percent.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
values
|
ndarray
|
1D numeric array with no NaNs allowed. |
required |
max_percent
|
float
|
Maximum fraction to remove (e.g., 0.10 = 10%). |
0.1
|
iqr_factor
|
float
|
1.5 for standard outliers, 3.0 for extreme outliers. |
1.5
|
Returns:
Type | Description |
---|---|
ndarray
|
Boolean array where |
Raises:
Type | Description |
---|---|
ValueError
|
If any NaN is detected in |
Source code in openavmkit/utilities/stats.py
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
|